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This article shows that the feasibility of scheduled discard as a failure management 
strategy mainly depends on the failure’s probability distribution. Although the term 
scheduled discard is used throughout this paper, please read it as scheduled 
discard and/or scheduled restoration.
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T he article discusses on the importance 
of technical history data, considers the 
differences between age-related fail-

ures and random failures and it demon-
strates the role of statistics using the nor-
mal probability distribution, the exponen-
tial probability distribution and the Weibull 
probability distribution as examples. The 
article also illustrates that, from a philo-
sophical point of view, we should formu-
late our theories as falsifiable hypotheses. 
In this article the author defends his view 
that the hypothesis that the failure con-
forms to the exponential probability dis-
tribution, should be selected as the null hy-
pothesis. Finally it shows how that null hy-
pothesis can be tested.

The Importance of Technical 
History Data
We are intrigued by data about failures that 
occurred in the past. We are eager to learn 
from these data. We want to distil informa-
tion in order to adapt our strategy. It would 
for instance be helpful to know which fail-
ures have occurred in the past, how often 
they occurred, what happened when they 
occurred, how they were handled etc.

This paper focuses on the following ques-
tion. Can we tell how long it will take be-
fore a specific failure will occur again, us-
ing technical history data about that fail-
ure? That information would enable us to 
anticipate on the occurrence of that failure. 
As an example, imagine that a specific fail-
ure comes back every so and so many years, 
months, weeks, running hours, kilometres 
etc. In that case we would seriously consid-
er discarding the associated component just 
before that failure would occur. A colleague 
of the author puts it very explicit: “You want 

to do it to the machine before the machine 
does it to you”.

According to SAE Standard JA1011 
“Evaluation Criteria for Reliability-Centered 
Maintenance (RCM) Processes”, scheduled 
discard is a feasible failure management 
strategy only if there is a clearly defined age 
at which there is an increase in the condi-
tional* probability of the failure mode un-
der consideration. Such failures are known 
as age-related failures. This means that SAE 
Standard JA1011 also implies that sched-
uled discard is not a feasible failure manage-

Figure 1. Conditional probability that a man deceases.
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* If E1 and E2 are two 
events, the probability 
that event E2 occurs giv-
en that event E1 has oc-
curred, is known as the 
conditional probability of 
E2 given that event E1 has 
occurred. The condition-
al probability of a failure 
is the probability that the 
failure occurs in a specif-
ic period (e.g. year) giv-
en that the failure has not 
occurred until that period 
(e.g. year).

Age-Related Failures
Figure 1 is based on the survival 
tables for men for the year 2007 
as published by Statistics Neth-
erlands. It shows the condition-
al probability of mortality. From 
a sample of 100.000 new-born 
boys, after 80 years there are 
54.168 survivors and after 81 
years 50.596. This means that, 
for men in their 81st year, the 
conditional probability of mor-
tality is 3.572/54.168 = 0,066 
(6,6 %).

Figure 2 is based on the sur-
vival tables for women for the 
year 2007. From a sample of 
100.000 new-born girls, after 
80 years there are 69.520 sur-
vivors and after 81 years 66.731. 
This means that, for women in 

Figure 2. Conditional probability that a woman deceases.

Figure 3. Conditional probability that a windshield breaks due to 
road debris.

their 81st year, the condition-
al probability of mortality is 
2.789/69.520 = 0,040 (4,0 %).

Figure 1 and Figure 2 show 
that the conditional probability 
of mortality is age-related, since 
it clearly increases with age.

Random Failures
Imagine that each year on av-
erage three out of thousand 
windshields break because 
they are struck by road debris. 
In that case, from a sample of 
1.000.000 windshields, after one 
year 997.000 are still intact, af-
ter two years 994.000, after 
three years 991.027 etc.

Figure 3 shows the condi-
tional probability of a wind-
shield breaking due to road 
debris. The probability that a 
new windshield breaks in the 
first year, is 3.000/1.000.000 or 
0,003 (0,3 %). The probability 
that a windshield that survived 
the first year breaks in the sec-
ond year, is 2.991/997.000 or 
0,3 %. The probability that a 
windshield that also survived 
the second year breaks in the 
third year, is 2.982/994.009 or 
(again) 0,3 %. 

The probability that a wind-
shield that also survived the 
third year breaks in the fourth 
year, is 2.973/991.027 or (still) 
0,3 % etc. This means that the 
conditional probability of failure 
is a constant. It is not in any way 
related to the age of the wind-
shield. Such failures are known 
as random failures.

The Role of Statistics
From our experience all of us 
will immediately be convinced 
that the conditional probability 
of mortality is age-related. Like-
wise, the conditional probability 
of a windshield breaking due to 
road debris being constant, will 
not come as a surprise to most 
of us. In these cases we do not 
need statistics to help us decide. 

In practice however, for most 
failures it is not so obvious. In 
these cases we would like sta-
tistics to help us distil this in-
formation from technical histo-
ry data.

One way of doing this is to 
plot the conditional probabili-
ty of failure against the age, as 
in Figures 1, 2 and 3. This plot 
shows whether the failure is age-
related or not. In their report, 
Nowlan and Heap describe six 
distinct patterns for such plots, 
as shown in Figure 4. Failures 
that conform to patterns A, B 
or C are age-related, while fail-
ures that conform to patterns D, 
E or F are not. Failures that con-
form to pattern E are random 
failures.

A different way to deter-
mine whether a failure is age-
related or not, is to use one of 
the tests statisticians specifically 
designed for this purpose. Henk 
Tijms defines statistics as a sci-
ence that seeks to derive conclu-
sions that are valid on a wider 
scale, from limited data. This is 
exactly the situation that we are 
in. We have limited data that is 
data about the occurrences of a 
failure in the past. And we do in-
deed seek to derive conclusions 
that are valid on a wider scale 
that is conclusions about the oc-
currence of the failure in the fu-
ture. The field of statistics offers 
a variety of models for describ-
ing observations obtained in ex-
periments.

The Normal Probability 
Distribution
Table 1 is based on an exam-
ple in John Moubray’s book. 
It shows technical history da-
ta about a sample of 100 pump 
impellers failing due to wear. 
All impellers lasted for at least 
7 years. After 8 years, 2 were 
worn. After 9 years 16, after 10 
years 50, after 11 years 84 and 
after 12 years 98. None of the 
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Figure 4. Six failure patterns.

impellers lasted for more than 
13 years. Most impellers lasted 
for 10 or 11 years.

Figure 5 shows the condi-
tional probability of a pump im-
peller failing due to wear. The 
field of statistics offers an ex-
cellent model for describing 
this impeller wear: the normal 
probability distribution. In other 
words, the time to impeller fail-
ure conforms to a normal prob-
ability distribution. 

The normal probability dis-
tribution is characterized by 
two parameters: the mean µ 
and the standard deviation σ. 
The normal probability distri-
bution is symmetric around its 
mean. In our impeller example, 
the mean is 10 years. The mean 
defines how long the impellers 
last on average, in other words 
the mean time between failures. 
The standard deviation follows 
the deviations from the mean. 
About 95 % of the observations 
do not deviate more than two 
standard deviations from the 
mean. In our impeller example, 
the standard deviation is ap-
proximately 1 year. This means 
that about 95 % of the impel-
lers last between 8 and 12 years. 
About 2,5 % last shorter than 8 
years and about 2,5 % last long-
er than 12 years. About 99,8 % 
of the impellers last for at least 
7 years.

This means that we might se-
lect discarding the impeller eve-
ry 7 years as our failure man-
agement strategy. Setting the in-
terval for this scheduled discard 
task is an optimization problem 
and outside the scope of this pa-
per.

The Exponential 
Probability Distribution
Table 2 is also based on an ex-
ample in John Moubray’s book. 
It shows technical history data 
about a sample of 100 ball bear-
ings failing due to fatigue.

cause the conditional probabili-
ty of failure is constant, it makes 
no sense to discard the bearings 
at fixed intervals. If this is hard 
to believe, please remember the 
example of the windshields 
breaking due to road debris.

The Weibull  
Probability Distribution
Besides the normal probability 
distribution and the exponen-
tial probability distribution, a 
third model is often used for de-
scribing failures, for instance by 
Lewis: the Weibull probability 

distribution. The Weibull prob-
ability distribution is character-
ized by two parameters. One pa-
rameter has the symbol ‘m’ and 
is known as the shape parame-
ter. The other parameter has the 
symbol Θ and is known as the 
scale parameter.

The Weibull probability dis-
tribution includes both the nor-
mal probability distribution and 
the exponential probability dis-
tribution. Setting the shape pa-
rameter to a value of 1, will 
transform the Weibull proba-
bility distribution into the expo-

Table 1. Impeller wear.

Year 1 2 3 4 5 6 7 8 9 10 11 12 13
Impellers before year 100 100 100 100 100 100 100 100 98 84 50 16 2

Impellers failed due 
to wear

0 0 0 0 0 0 0 2 14 34 34 14 2

Impellers after year 100 100 100 100 100 100 100 98 84 50 16 2 0

Conditional 
probability of failure

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,02 0,14 0,40 0,68 0,88 1,00

Figure 6 shows the condi-
tional probability of a ball bear-
ing failing due to fatigue. Again, 
the field of statistics offers an 
excellent model for describing 
this bearing fatigue: the expo-
nential probability distribution. 
In other words, the time to bear-
ing failure conforms to an expo-
nential probability distribution. 
A typical property of this prob-
ability distribution is the condi-
tional probability of failure be-
ing constant. The exponential 
probability distribution is char-
acterized by only one parameter. 
This parameter has the symbol λ. 
It corresponds to the condition-
al probability of failure.

Imagine a sample of 100 
ball bearings. Hank selects dis-
carding the ball bearings every 
8 years as his strategy for man-
aging fatigue. Fred decides to 
keep his hands of the ball bear-
ings. Who is right? After 8 years, 
Hank would have 43 bearings 
left. He would then replace these 
43 bearings by new ones. After 
1 year he would have 39 bear-
ings left, after 2 years 35, after 3 
years 31, after 4 years 28, after 5 
years 25, after 6 years 23, after 7 
years 21 and after 8 years 19. 

So, after 16 years in total, 
Hank would have 19 bearings 
left. And what about Fred? After 
8 years, Fred would also have 43 
bearings left. He would however 
not replace these bearings. How 
many bearings would Fred have 
left after another 8 years? Also 
19! And if we had chosen an in-
terval different than 8 years? 
Fred would still be right. Be-
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Figure 5. Conditional probability that an impeller fails due to wear.

Table 2. Bearing fatigue.

Figure 6. Conditional probability that a bearing fails due to fatigue.

Postulating Hypotheses – 
a Philosophical Approach
In our attempts to describe a 
failure, which probability dis-
tribution should be our start-
ing point? In other words, 
what should we assume? That 
the time to failure conforms to 
a normal probability distribu-
tion, to an exponential proba-
bility distribution, to a Weibull 
probability distribution or to 
one of the many other proba-
bility distributions known from 
the field of statistics? 

We could for instance try 
to describe the failures of the 
pump impellers due to wear 
discussed earlier, with an expo-
nential probability distribution. 
That attempt would fail. Like-
wise, we could try to describe 
the failures of the ball bearings 
due to fatigue, with a normal 
probability distribution. That at-
tempt would fail too. 

In this case the technical his-
tory data are artificial and cho-
sen with great care. In fact they 
are probably too good to be 
true. In practice technical his-
tory data are not that good and 
all three probability distribu-
tions discussed in this article 
could be used. So the question 
remains unanswered. Where do 
we start?

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bearings before year 100 90 81 73 66 59 53 48 43 39 35 31 28 25 23 21

Bearings failed due to fatigue 10 9 8 7 7 6 5 5 4 4 4 3 3 2 2 2

Bearings after year 90 81 73 66 59 53 48 43 39 35 31 28 25 23 21 19

Conditional probability of failure 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10

nential probability distribution. 
And setting the shape parame-
ter to a value larger than 2, will 
transform the Weibull probabil-
ity distribution into the normal 
probability distribution. Table 3 
shows the relation between the 
Weibull probability distribu-
tion on one hand and the nor-
mal probability distribution, the 
exponential probability distribu-
tion and the failure patterns on 
the other hand.

Failures that conform to a 
Weibull probability distribution 

with m > 1 are age-related fail-
ures. Failures that conform to 
a Weibull probability distribu-
tion with m = 1 are random fail-
ures. For failures that conform 
to a Weibull probability distribu-
tion with m < 1, the condition-
al probability of failure decreas-
es instead of increases with age. 
Usually, the strategy for manag-
ing this type of failures is a one-
time change to the design, to the 
operating conditions, to a proce-
dure or instruction or to knowl-
edge and skills.
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Table 3. Relation between probability distribution and failure 
patterns.

Weibull 
probability 
distribu-
tion shape 
parameter 

Corre-
sponding 
probabili-
ty distribu-
tion

Conditional 
probability 
of failure

Failure pat-
tern (ac-
cording to 
Nowlan and 
Heap)

m > 4 Normal Increasing B

2 < m < 4 Normal Increasing C

1 < m < 2 Increasing D

m = 1 Exponential Constant E

m < 1 Decreasing F

According to the philosopher 
Karl Popper, there are two types 
of theories:
•	 theories that are known 

to be wrong, as they were 
tested and adequately re-
jected (falsified),

•	 theories that have not 
yet been known to be 
wrong, not falsified yet, 
but are exposed to be 
proved wrong.

An interesting problem that has 
challenged many philosophers is 
that of the black swan. It is im-
possible to prove that all swans 
are white. Regardless of how 
many white swans we have seen, 
sooner or later we may bounce 
into a black swan. 

Figure 7. The black swan 
problem.
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This means that the theory 
that all swans are white is a the-
ory that has not yet been known 
to be wrong, that has not been 
falsified yet, but that is exposed 
to be proved wrong. What if 
we try to prove the opposite 
that means that not all swans 
are white? This of course is per-
fectly possible. Seeing one sin-
gle black swan would be enough 
to prove this theory. Popper ex-
plained that a theory can never 
be verified. Therefore we should 
postulate theories in such a way 
that they can be falsified.

In the field of statistics, Pop-
per’s theories are known as hy-
potheses. Popper suggests that 
any hypothesis should be postu-
lated in such a way that we are 
able to prove it to be wrong (fal-
sify it) using a test. Imagine for 
example that we want to prove 
that a pair of dice is loaded. In 
that case we would attempt to 
reject (falsify) the hypothesis 
that the pair of dice is fair. In the 
field of statistics this is known 
as the null hypothesis.

How should the null hypoth-
esis read in the case of failures? 
That the failure is a random fail-
ure and conforms to the expo-
nential probability distribution? 
Or that the failure is age-relat-
ed and conforms to the normal 
probability distribution?

Selecting  
the Null Hypothesis
Testing an hypothesis can lead 
to two types of errors. We reject 
the hypothesis when it should 
be accepted (type 1 error) or 
we accept the hypothesis when 
it should be rejected (type 2 er-
ror). Let us first assume that we 
select random failure and the ex-
ponential probability distribu-
tion as the null hypothesis. Im-
agine making a type 1 error, in 
other words rejecting the expo-
nential probability distribution 
when it should be accepted. As 

our next attempt, we should 
then select an age-related failure 
and the normal probability dis-
tribution as the null hypothesis. 
This hypothesis will almost cer-
tainly be rejected, so we would 
decide that scheduled discard is 
not a feasible failure manage-
ment strategy and be compelled 
to consider alternatives. Now 
imagine making a type 2 error, 
in other words accepting the ex-
ponential probability distribu-
tion when it should be reject-
ed. We would again decide that 
scheduled discard is not a feasi-
ble failure management strategy 
and consider alternatives.

Let us now assume that we 
select age-related failure and the 
normal probability distribution 
as the null hypothesis. Imagine 
making a type 1 error, in oth-
er words rejecting the normal 
probability distribution when it 
should be accepted. As before, 
we would decide that scheduled 
discard is not a feasible failure 
management strategy and be 
compelled to consider alterna-
tives. 

Finally, imagine making a 
type 2 error, in other words ac-
cepting the normal probability 
distribution when it should be 
rejected. We would decide that 
scheduled discard is a feasible 
failure management strategy, al-
though the failure is not an age-
related failure. The conditional 
probability of failure could be 
constant or even decrease with 
age. In the first case, scheduled 
discard will not reduce the con-
ditional probability of failure, as 
shown by the example in sec-
tion The Exponential Probabil-
ity Distribution. 

In the second case, scheduled 
discard would even be counter-

productive, since it would in-
crease the conditional proba-
bility of failure. So, in case of 
this null hypothesis, a type 2 er-
ror would be delusive. We would 
be convinced that the failure is 
managed effectively by a sched-
uled discard task, while in fact it 
is not. In most cases this will not 
be acceptable. It will certainly 
not be acceptable in cases where 
the failure could effect safety or 
the environment.

The consequences of making 
a type 2 error in case of the sec-
ond null hypothesis are far more 
serious than the consequences 
of making a type 1 or a type 2 
error in case of the first null hy-
pothesis. Hence, we should se-
lect random failure and the ex-
ponential probability distribu-
tion as the null hypothesis.

The following quote from 
Nassim Nicholas Taleb offers 
food for thought: “Shouldn’t 
we be concerned with situa-
tions where patterns have been 
ignored, where non-random-
ness is mistaken for random-
ness? Mistaking non-random-
ness for randomness is not as 
costly as an error in the opposite 
direction. Even popular opinion 
warns that bad information is 
worse than no information at 
all”. In the context of this pa-
per Taleb points out that mis-
taking an age-related failure for 
a random failure is not as cost-
ly as mistaking a random failure 
for an age-related failure. 

Finally, the number of param-
eters that characterize a proba-
bility distribution embodies a 
fundamental reason for select-
ing random failure and the ex-
ponential probability distribu-
tion as the null hypothesis. The 
exponential probability distribu-

tion only needs one parameter, 
whereas the normal probability 
distribution needs two param-
eters and other Weibull prob-
ability distributions also need 
two or even three. As a gener-
al rule, the more parameters a 
model has, the easier it becomes 
to fit that model to observations. 
However, adding more parame-
ters makes the model more com-
plex but not necessarily more 
realistic. Tests from the field of 
statistics do take the number of 
parameters required to charac-
terize a probability distribution 
into account.

Testing  
the Null Hypothesis
The following examples are dis-
cussed during The Aladon Net-
work’s introductory course on 
Reliability-centred Maintenance. 
Both examples are wonderfully 
in line with the following quote 
from John Allen Paulos: “Most 
quantities do not have nice bell-
shaped distribution curves, and 
the average or mean value of 
these quantities is of limited im-
portance without some measure 
of the variability of the distri-
bution and an appreciation of 
the rough shape of the distribu-
tion curve”.

The first example considers 
seizing of a ball bearing due to 
fatigue. Technical history da-
ta tell us that the first bearing 
seized after 3 years, the second 
bearing after 1 year and the 
third bearing after 5 years. The 
null hypothesis is that the fail-
ure is a random failure that con-
forms to the exponential proba-
bility distribution. 

As described earlier, the expo-
nential probability distribution 
is characterized by only one pa-

we should first select random 
failure and the exponential 
probability distribution as the 
null hypothesis.
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rameter. This parameter λ equals 
the conditional probability of 
failure. It also equals the recip-
rocal value of the mean time be-
tween failures. From these tech-
nical history data it follows that 
the mean time between failures 
is 3 years. This means that λ = 
1/3 per year. Then, for an expo-
nential probability distribution 
with λ = 1/3, we derive the theo-
retical number of failures in the 
first or second year, in the third 
or fourth year, and in the fifth 
or sixth year. Finally, we com-
pare the theoretical number of 
failures with the actual number 
of failures, for instance using the 
chi-square test. If these numbers 
differ too much, the hypothesis 
will be rejected. 

In the case of this exam-
ple the numbers do not differ 
enough for allowing the hypoth-
esis to be rejected at a confidence 
level of 95 %. Not being able to 
reject the hypothesis, means that 
the failure may indeed be a ran-
dom failure and that we should 
not assume that it is an age-re-
lated failure. Only for confidence 
levels below 73 %, the numbers 
differ enough and the hypothe-
sis can be rejected. However, a 
confidence level of 73 % means 
that there is a 27 % chance of 
a type 1 error, in other words a 
27 % chance that the hypothe-
sis is rejected when it should be 
accepted. 

The second example also con-
siders seizing of a ball bearing 

due to fatigue. Technical histo-
ry data tell us that the first bear-
ing seized after 3 years, the sec-
ond bearing after 1 year and the 
third bearing after 6 years, the 
fourth bearing after 2 years, the 
fifth bearing after 5 years and 
the sixth bearing after 4 years. 

From these technical histo-
ry data it follows that the mean 
time between failures is 3,5 years. 
This means that λ = 2/7 per year. 
Then, for an exponential prob-
ability distribution with λ = 2/7, 
we derive the theoretical number 
of failures in the first year, in the 
second year, in the third year, in 
the fourth year, in the fifth year 
and in the sixth year. 

Again, we compare the theo-
retical number of failures with 
the actual number of failures, 
for instance using the chi-square 
test. Also in the case of this ex-
ample the numbers do not dif-
fer enough for allowing the hy-
pothesis to be rejected at a con-
fidence level of 95 %. 

Not being able to reject the 
hypothesis, means that the failure 
may indeed be a random failure 
and that we should not assume 
that it is an age-related failure. 
Only for confidence levels below 
43 %, the numbers differ enough 
and the hypothesis can be reject-
ed. However, a confidence level 
of 43 % means that there is a 
57 % chance of a type 1 error, in 
other words a 57 % chance that 
the hypothesis is rejected when 
it should be accepted.

Conclusions
In our efforts to select a prob-
ability distribution that ade-
quately describes a specific fail-
ure, we should first select ran-
dom failure and the exponential 
probability distribution as the 
null hypothesis. This hypothe-
sis should be tested at a confi-
dence level of 95 %, a level that 
is quite usual in the field of sta-
tistics. In case this null hypoth-
esis cannot be rejected, a sched-
uled discard task is not a feasi-
ble failure management strate-
gy. In case this null hypothesis 
can be rejected, age-related fail-
ure and the normal probability 
distribution should be selected 
as the next null hypothesis. In 
case this (second) null hypothe-
sis cannot be rejected, a sched-
uled discard task could be a fea-
sible failure management strat-
egy. In case this (second) null 
hypothesis can be rejected, we 
should consider other failure 
management strategies.   
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Mitsubishi »» Electric will be 
unveiling what they describe as 
an innovative new energy so-
lution for advanced factories 
of the future called the e&eco-
F@ctory. The development will 
be shown in practice in a live 
application combining the com-

pany's business areas Facto-
ry Automation (CNCs, PLCs, 
wire-cut and die-sinker EDMs, 
and laser processing machines), 
Air-Conditioning and Photo-
voltaic with regard to their to-
tal energy consumption and 
management. 

As a result, the exhibitors 
claim that they are not on-
ly able to show the high qual-
ity and open connectivity of 
their product range but can 
also demonstrate their first-
class energy management so-
lutions. 

As is pointed out, ener-
gy management is an essen-
tial factor for modern pro-
duction and management de-
cisions. 

Futher »» information:
www.mitsubishielectric.com
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